TUGAS
Nama : Naufal Farid
Nim : A11.2011.05895
Mata Kuliah: Matematika Diskrit
Dalam matematika diskrit konsep fungsi sangat penting, dimana fungsi merupakan relasi yang mempunyai syarat setiap anggota dari daerah definisi (domain) mempunyai pasangan tepat satu anggota dari daerah Hasil (codomain).
DEFINISI FUNGSI
Diberikan dua himpunan A dan B, relasi biner f dari himpunan A ke B merupakan suatu fungsi jika setiap elemen di dalam himpunan A mempunyai pasangan tepat satu elemen himpunan B.
Apabila f adalah fungsi dari himpunan A ke B maka notasi fungsinya
f : A → B
Himpunan A disebut daerah definisi(domain) dan himpunan B disebut daerah hasil (codomain).
Untuk x ∈ A dan y ∈B maka rumus fungsí 1) dapat dinyatakan sbb:
x → y = f(x)
Terapan Fungsi
1. Formula pengisian nilai dalam bahasa pemrograman dinyatakan dengan assignment
Contoh diberikan rumusan fungsi f(x) = x2 +1 , f(x) = x +1 , apabila tidak didefinisikan secara khusus tentang daerah definisi maka daerah definisi dan daerah hasil adalah himpunan Himpunan bilangan riil misal R.
Dalam himpunan pasangan terurut fungsi didefinisikan sbb:
f = { (x1, x2}/ x ∈ R }
2. Kode program ( source code)
Fungsi yang dispesifikasikan dalam bahasa Pascal
Function abs(x: integer): integer;
Begin
if x < 0 then
abs := -x
else
abs := x;
end;
Relasi f = {(1,a),(2,b),(3,c) }dari himpunan A ke B, {1,2,3} ∈ A dan {a,b,c}∈ B merupa- kan fungsi karena Relasi f memasangkan tepat satu anggota himpunan A dengan anggota himpunan B
Keterangan :
f(1) = a, f (2) = b dan f (3) = c
Himpunan A disebut daerah definisi dan himpunan B sebagai daerah hasil.
JENIS FUNGSI
Ditinjau pada daerah hasil atau bayangan fungsi dibedakan atas fungsi injektif(injective), surjektif( surjective) dan bijeksi (bijection)
Fungsi injektif (injective)
Fungsi f dikatakan one-to-one atau injektif (injective) apabila a dan b anggota himpunan A maka f(a) ≠ f(b) bilamana a ≠ b untuk f(a) dan f(b) anggota himpunan B.
Fungsi surjektif(surjective)
Fungsi f dikatakan pada (onto) atau surjektif(surjective) apabila setiap elemen dari himpunan B merupakan bayangan dari satu atau lebih elemen himpunan A.Dengan kata lain seluruh elemen himpunan B merupakan jelajah dari f.
Fungsi bijeksi(bijection)
Fungsi f dikatakan berkorespodensi satu-satu atau bijeksi(bijection) apabila ia fungsi one-to-one dan surjective.
FUNGSI INVERS
Apabila f merupakan fungsi berkorespondensi satu-satu dari himpunan A ke himpunan B maka fungsi tersebut mempunyai invers yaitu f -1(y) = x , untuk x ∈ A dan y ∈ B, f -1 merupakan invers dari fungsi f.
KOMPOSISI FUNGSI
Komposisi dari dua fungsi f dan g dinyatakan f°g, f merupakan fungsi yang memetakan anggota himpunan A ke himpunan B dan fungsi g memetakan anggota himpunan B ke himpunan C. Fungsi dari himpunan A ke himpunan C didefinisikan f° g(x) = f( g(x)), x ∈ A .
Beberapa Fungsi Khusus
Beberapa fungsi khusus yang sering digunakan dalam bahasa pemrograman seperti fungsi floor, ceiling, modulo, faktorial, perpangkatan dan logaritmik.
1.Fungsi floor dan ceiling
Fungsi ini diperlukan untuk membulatkan ke bawah dan keatas. Fungsi floor diperlukan untuk membulatkan nilai pecahan kebawah, misalkan x bilangan riil maka bilangan floor dilambangkan ⎣x⎦. Fungsi ceiling diperlukan untuk membulatkan nilai pecahan keatas dan dilambangkan ⎡x⎤.
2.Fungsi Modulo
Fungsi modulo adalah fungsi dengan operator mod, misalkan b sembarang bilangan bulat dan m bilangan bulat positip maka b mod memberikan sisa pembagian bilangan bulat apabila b dibagi dengan m .
3.Fungsi hash
Misalkan dipunyai sel-sel pada memori komputer yang diberi indek dari 0 sampai dengan 10.
4.Fungsi faktorial
Untuk sembarang bilangan bulat non negatif n, faktorial dari n dilambangkan dengan n ! yang didefinisikan.
No comments:
Post a Comment